Problem 2-5: Evaluating Indeterminate Form April 9, 2010Limitsindeterminate formYaz Calculate . Solution More from my siteProblem 2-4: Computing Limits of a Rational FunctionProblem 2-2: Evaluating Derivative of Functions and the Tangent LinesProblem 1-10: Solving by Nodal Analysis – Circuit with Four NodesProblem 1-2: Power and Conductance of ResistorsProblem 2-9: Differentiating Polynomial and Rational FunctionsProblem 1-7: Circuit Reduction – Current Divider

Here you go: $latex \displaystyle\lim_{x\to 4}\frac{\sqrt{x}-2}{x-4}=\displaystyle\lim_{x\to 4}\frac{\sqrt{x}-2}{x-4} \times \frac{\sqrt{x}+2}{\sqrt{x}+2}$ $latex =\displaystyle\lim_{x\to 4}\frac{\sqrt{x}^2-2^2}{(x-4)(\sqrt{x}+2)}=\displaystyle\lim_{x\to 4}\frac{x-4}{(x-4)(\sqrt{x}+2)}$ $latex =\displaystyle\lim_{x\to 4}\frac{1}{(\sqrt{x}+2)}=\frac{1}{(\sqrt{4}+2)}=\frac{1}{4}$ Reply

ahmm.. can you solved this one..

sqrt of x-2/x-4 as xapproaches to 4

Here you go:

$latex \displaystyle\lim_{x\to 4}\frac{\sqrt{x}-2}{x-4}=\displaystyle\lim_{x\to 4}\frac{\sqrt{x}-2}{x-4} \times \frac{\sqrt{x}+2}{\sqrt{x}+2}$

$latex =\displaystyle\lim_{x\to 4}\frac{\sqrt{x}^2-2^2}{(x-4)(\sqrt{x}+2)}=\displaystyle\lim_{x\to 4}\frac{x-4}{(x-4)(\sqrt{x}+2)}$

$latex =\displaystyle\lim_{x\to 4}\frac{1}{(\sqrt{x}+2)}=\frac{1}{(\sqrt{4}+2)}=\frac{1}{4}$